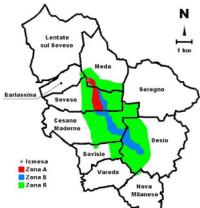


La rete di associazioni ambientaliste pubblica un documento in cui analizza lo studio della Fondazione Lombardia per l'Ambiente

Riceviamo e pubblichiamo

I contenuti del rapporto FLA

Il rapporto completo della FLA cui abbiamo potuto accedere, è consultabile all'Archivio del Ponte della Memoria che si trova presso il Circolo Legambiente Laura Conti di Seveso, associazione aderente ad INSIEME IN RETE, e nelle disponibilità di tutte le amministrazioni locali (come si può evincere nel documento stesso).


Ve lo proponiamo quale contributo dei gruppi di INSIEME IN RETE, per dare ulteriori elementi atti a rafforzare quanto da tempo diciamo e cioè, il pesante rischio per la salute cui si sottoporrebbe la popolazione locale, qualora si procedesse alla costruzione dell'autostrada Pedemontana nei tratti che interferiscono proprio con le zone interessate dall'incidente ICMESA, ancora oggi contaminate da TCDD (DIOSSINA).

Un passaggio che sulle suddette zone avrà anche un impatto determinato dalle opere

complementari e di connessione all'autostrada stessa.

Rispetto al documento della FLA, (di cui rendiamo accessibili le pagine di relazione) le analisi sulle concentrazioni di TCDD (Tetraclorurodibenzoparadiossina – la Diossina dell'ICMESA) eseguite nel 2008 da una società incaricata da Pedemontana e in contradditorio con ARPA (in nostro possesso), confermano la presenza di diossina oltre le soglie stabilite dalle normative (10 ng/Kg per verde pubblico e 100ng/kg per siti a destinazione industriale secondo il Dlgs 22 del 5/02/97 – decreto Ronchi).

Esattamente, 52 campionamenti superano il limite a verde pubblico e di questi, 10 superano anche il limite industriale (10 volte più alto).

I rilevamenti del 2008, quindi confermano e ampliano le zone concentrazione da TCDD fuori norma anche alla zona di rispetto (zona R).

Ad aprile del 2003, la FLA (Fondazione Lombardia per l'Ambiente) ha formalizzato il documento conclusivo che riassume il progetto di ricerca denominato: "ANALISI DI RISCHIO RELATIVA ALLA PRESENZA DI DIOSSINA RESIDUA NELLA ZONA B DI SEVESO".

Progetto commissionato alla FLA da REGIONE LOMBARDIA che "ha inteso promuovere uno studio scientifico di analisi di rischio inteso ad individuare idonei interventi di bonifica e/o ripristino ambientale con misure di sicurezza", costituendo allo scopo uno specifico gruppo di lavoro tra Reg. Lombardia, FLA, ARPA, ARF (azienda Regionale Agricoltura e Foreste, ora ERSAF), poi esteso ai rappresentanti dei Comuni di Seveso, Cesano Maderno, Desio e Meda.

FLA ha poi attivato un comitato scientifico che ha prodotto il lavoro.

Lo studio, dopo analisi ed elaborazioni preliminari sui dati disponibili, "ha permesso di stimare la maggiore esposizione alle diossine cui sono soggetti i residenti della zona B rispetto a soggetti residenti altrove, in particolare in aree non inquinate.

Con la dicitura "diossine", si intende la sommatoria di tutti i tipi di policlorodibenzo-p-diossine –PCDD- e dei policlorodibenzofurani - PCDF Furani.

Tra le diossine c'è però la prevalenza, con una concentrazione minima dell'85% della TCDD, la "diossina dell'Icmesa" appunto.

La conclusione dello studio ha analizzato tre diverse tipologie di esposizione e cioè:

"Scenario centrale zona B" con limitate attività a rischio

"Scenario estremo zona B" con significative attività a rischio

"Scenario centrale di riferimento" quale confronto con situazioni con un inquinamento e un rischio "di fondo" alla quale è esposta la popolazione generale.

Per attività di rischio e di esposizione si sono intese:

- 1. ingestione di particelle di suolo inquinato;
- 2. contatto dermico con particelle di suolo inquinato;
- 3. inalazione;
- 4. ingestione d'acqua;
- 5. ingestione di prodotti alimentari di provenienza esterna (carne, pesce, latte e prodotti derivati, uova, frutta e verdura, cereali e derivati);
- 6. ingestione di prodotti alimentari provenienti direttamente dalla zona B (solo vegetali o vegetali, polli e uova, a seconda degli scenari).

I risultati sono stati:

- 1. per lo "Scenario centrale zona B" un valore di esposizione settimanale pari a 10 pg/kg (picogrammi per chilo di peso corporeo) pari a 1,42 pg/kg al giorno.
- 2. per lo "Scenario estremo zona B" un valore di esposizione settimanale da 16 a 29 pg/kg quindi da 2,28 pg/kg al giorno a 4,14 pg/kg al giorno.
- 3. per lo "Scenario centrale di riferimento" un valore di esposizione settimanale di 9 pg/kg pari a 1,28 pg/kg al giorno

Se si prende come riferimento il valore limite di dose tollerabile settimanale (TWI) stabilita dalla Scientific Committee on Food (SCF) della Commissione Europea e pari a 14 pg/Kg (picogrammi per kg di peso corporeo, i cittadini dello "Scenario estremo zona B" risultano essere maggiormente esposti nonché fuori dai limiti normativi, rispetto alle altre due situazioni prese in

esame

Se invece si prende come riferimento il limite di dose tollerabile giornaliera stabilito dall'Organizzazione Mondiale della Sanità (WHO) pari a un valore che va da 1 pg/kg a 4 pg/kg, (dove 4 pg/kg al giorno sono considerati come "massima assunzione tollerabile per un periodo transitorio e il valore di 1pg/kg è il valore dell'obiettivo finale da raggiungere) ci ritroveremmo a confrontare tutti e tre gli scenari con un valore settimanale che va da 7pg/kg a 28 pg/kg il che metterebbe tutti i tre scenari fuori dal limite d'obiettivo da raggiungere cioè il valore di 7pg/kg settimanali.

Nel finale, il rapporto FLA si limita poi a consigliare alcune precauzioni:

- anche alla luce delle recenti determinazioni comunitarie sulla TWI in precedenza documentate, l'esposizione alle diossine dovuta alla dieta è di cruciale importanza e ha una rilevanza tutt'altro che trascurabile anche nella popolazione generale, cioè esterna alla zona B e all'area di Seveso;
- 2. si suggerisce di adottare opportune cautele al consumo di prodotti alimentari provenienti direttamente dalla zona B, con particolare riguardo ai prodotti animali in generale nonché a taluni particolari prodotti vegetali.

FLA consiglia inoltre una serie ulteriore di attività di ricerca e approfondimento.

Le nostre considerazioni

Dell'intero documento, cosa ci interessa evidenziare ?Sicuramente due aspetti.

Il primo relativo ad una serie di dati sulle concentrazioni di diossine rilevate nei terreni della zona B mappata nei comuni di Cesano Maderno, Desio e Seveso con la campagna effettuata dall' ISPRA negli anni dal 1997 al 1999.

Già allora, la situazione contaminazione appariva fortemente marchiata dal TCDD (diossina dell'Icmesa) con concentrazioni fuori limite. (vedi tabelle e mappe sotto).

Le premesse e i dati analitici dell'indagine dell'ISPRA negli anni '97-99:

Limiti di legge = 10 ng/Kg per verde pubblico e 100ng/kg per siti a destinazione industriale

Tab. A2.8 - continua dalla pagina precedente.

CAMPIONAMENTO ANALITICO DELLA 2,3,7,8-TCDD RESIDUA IN CAMPIONI DI SUOLO, ORGANISMI INDICATORI VEGETALI E ANIMALI DELLE ZONE B ED R DI SEVESO E COMUNI LIMITROFI

Sintesi della ricerca

L'analisi del suolo e dei vegetali nel territorio di Seveso è stata sviluppata sulla base dei risultati acquisiti negli anni precedenti (vedi Tab. A2.6). È stato dimostrato che PCDD e PCDF non sono soggetti a mobilità e di conseguenza confermano il fatto che non si è riscontrata la presenza di diossine sotto i 30 cm di profondità dalla superficie. Sono tuttavia in corso ulteriori analisi per convalidare questa ipotesi e per valutare l'influenza delle diossine sulla salute dell'uomo. Infatti, poiché questi composti raggiungono la catena alimentare, è necessario sapere, in caso siano riscontrate diossine, se l'area contaminata è coltivata. In aree non coltivate la TCDD può raggiungere l'uomo per vie più dirette, a conferma che le analisi condotte sullo strato superficiale del terreno sono di significativa importanza. La scelta dei siti è stata condizionata dalla presenza di orti in cui fossero reperibili

La scelta dei siti è stata condizionata dalla presenza di orti in cui fossero reperibili cucurbitacee (zucchine) o vegetali simili. Le priorità per la scelta sono state le seguenti: conferma dei risultati delle campagne precedenti nei punti a più alta concentrazione; campionamento in siti non ancora controllati; selezione di aree adatte a un prelievo tra 30 e 50 cm di profondità ossia siti con alte concentrazioni non coltivati.

Nella zona A i campioni sono stati raccolti nelle vicinanze della vasca all'interno del Bosco delle Querce (collina di Seveso)e della vasca nella zona nord del Bosco (collina di Meda).

In totale sono stati prelevati 74 campioni di suolo (20 in zona A e 54 in zona B), 23 campioni di vegetali in zona B. Negli ultimi mesi della ricerca (febbraio-marzo 2000) sono state ripetute le analisi del suolo con apparecchi di misurazione innovativi, che hanno permesso di ottenere risultati estremamente precisi evidenziando una residua contaminazione di TCDD superiore ai valori recentemente stabiliti dal D.M. 471/1999.

Tab. A3.3 - Diossine (TCDD, I-TEQ e WHO-TEQ) rilevate dal JRC di Ispra nell'ambito dei
campionamenti effettuati nel periodo 1997-1999 (dati ordinati per comune e concentrazione).

O 2 P 2 R 3 S 3 N 2 O 2 K 2 J 2 Q 3 M 2 Q 2 T 3	32 26 27 27 30	11	3.225		TCDD [ng (kgSS) ⁻¹]	I-TEQ Ing (kgSS) ¹	WHO-TEQ [ng (kgSS) ⁻¹]	rapporte TCDD/LTEQ	гаррене TCDD/WHO-TEQ	Comunesi
P 2 R 2 S 3 N 2 O 2 K 2 J 2 P 2 Q 3 M 2 N 2 Q 2 T 3	27 27 30			1.425	0,19	1,5	1,5	0,127	0,127	
R 2 S 3 N 2 O 2 K 2 J 2 Q 3 M 2 N 2 Q 2 T 3	27 30		2.340	2.310	1,4	3,3	3,3	0,424	0,419	
S 2 N 2 O 2 K 2 J 2 P 2 Q 3 M 2 N 2 Q 2 T 3	30		2.480	2.200	3	5,6	5,7	0,536	0,529	
N 2 O 2 K 2 J 2 P 2 Q 3 M 2 N 2 Q 2 T 3			2.775	2.175	1,5	5,9	6,2	0,254	0,242	
O 2 K 2 J 2 P 2 Q 3 M 2 N 2 Q 2 T 3			2.925	1.725	5,6	7,7	7,6	0,727	0,737	
K 2 J 2 P 2 Q 3 M 2 N 2 Q 2 T 3	22		2.190	2.875	7,9	9,3	9,3	0,849	0,847	
J 2 P 2 Q 3 M 2 N 2 Q 2 T 3	23		2.390	2.820	- 8	9,8	9,9	0,816	0,809	
P 2 Q 3 M 2 N 2 Q 2 T 3	23		1.810	2.780	7,9	10	10	0,790	0,763	
Q 3 M 2 N 2 Q 2 T 3	22		1.600	2.950	9,9	13	14	0,762	0,723	
M 2 N 2 Q 2 T 3	29		2.475	1.875	13	16	16	0,813	0,813	
N 2 Q 2 T 3	30		2.625	1.725	9	17	16	0,529	0,563	
Q 2 T 3	22		2.025	2.925	12	17	18	0,706	0,667	
T 3	23		2.230	2.730	15	18	18	0,833	0,851	
	29		2.625	1.875	12	18	18	0,667	0,667	
	33		3.030	1.360	16	18	19	0,889	0,865	Cesano Maderno
	27		2.625	2.175	15	19	19	0,789	0,789	Cesano mascino
	30	_	2.775	1.745	15	19	19	0,789	0,785	
	22		2.325	2.925	15	20	20	0,750	0,750	
	30	_	3.235	1.740	16	20	20	0,800	0,787	
	22	_	1.910	2.935	19	21	21	0,905	0,897	
	27	_	2.190	2.140	19	23	23	0,826	0,833	
	31	_	2.775	1.575	15	24	25	0,625	0,600	
	27	÷	2.325	2.175	21	26	26	0,808	0,808	
	31	1	3.260	1.410	27	29	29	0,931	0,925	
	31	-	3.225	1.575	29	31	31	0,935	0,935	
	24	-			29	32	32	0,906	0,906	
		-	2.345	2.662	29	33	33	0,879	0,883	
		-	2.325	2.025	27	33	34	0,818	0,794	
R 2	28 26	-	2.220	2.250	29 34	37	37	0,784	0,789	

# campione	coord, X [m]	coord, Y [m]	TCDD [ng (kgSS) ⁻¹]	I-TEQ [ng (kgSS)"]	WHO-TEQ [ng (kgSS) ⁻¹]	rapporto TCDD/I-TEQ	rapporto TCDD/WHO-TE	Comune/i
	2.475	2.475	35	39	39	0,897	0,897	
Ш	2.330	2.475	37	41	42	0,902	0,881	
	3.065	1.560	39	42	42	0,929	0,936	
	2.925	1.875	39	42	42	0,929	0,929	
П	3.375	1.425	43	46	46	0,935	0,935	
	2.775	1.875	45	48	48		0,938	
П	2.330	2.475	52	56	56	0,929	0,929	
	2.470	2.018	44	56	56	0,786	0,783	
	3.070	1.745	49	59	58		0,839	
	2.475	2.325	61	64	64	0,953	0,953	Cesano Mademo
1	2 330	2.475	65	70	70	0.020	0.000	

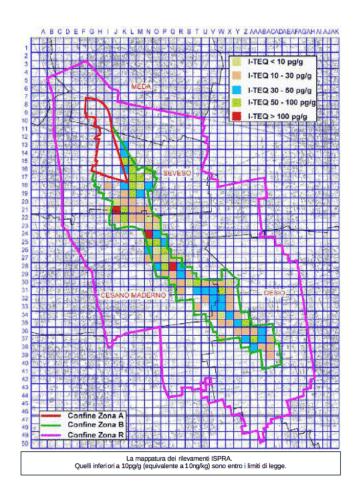
segue alla pagina succe

Tab. A33 - continua dalla nagina precedente.

coord. X (maglia)	coord. Y (maglia)	# campione	coord. X [m]	coord. Y [m]	TCDD [ng (kgSS) ⁻¹]	I-TEQ [ng (kgSS) ⁻¹]	WHO-TEQ [ng (kgSS) ⁻¹]	rapporto TCDDA-TEQ	rapporto TCDD/WHO-TEQ	Comunes
Z	37	I	4.010	710	18	21	21	0,857	0,871	
W	37		3.560	650	18	21	21	0,857	0,859	
X	32		3.675	1.575	16	21	22	0,762	0,727	
V	34		3.375	1.125	19	22	22	0,864	0,864	
AC	39		4.490	370	19	22	22	0,864	0,863	
Y	36	1	3.890	800	20	22	22	0,909	0,891	
Y	34		3.870	1.130	19	23	23	0,826	0,838	
X	33		3.660	1.300	19	24	24	0,792	0,783	
Z	36		4.010	830	24	26	26	0,923	0,923	
W	35		3.550	990	24	26	27	0,923	0,903	
AB	38		4.275	525	26	29	29	0,897	0,897	
AC	37		4.455	605	27	29	29	0,931	0,921	
AB	37		4.280	700	22	31	30	0,710		Desio
AB	36		4.290	810	23	31	30	0,742		
Y	36	П	3.800	810	28	32	32	0,875		
X	34		3.675	1.125	29	34	34	0,853	0,853	
V	33		3.375	1.275	34	36	37	0,944	0,919	
Y	35		3.890	960	34	37	37	0,919	0,926	
W	33		3.525	1.275	25	38	38	0,658	0,658	
AA	38		4.125	525	38	42	42	0,905	0,905	
W	32		3.525	1.425	39	44	44	0,886	0,881	
AA	37		4.125	675	47	51	51	0,922	0,922	
Z	35		3.975	975	39	55	56	0,709		
Z	37	Ш	4.010	760	54	58	58	0,931	0,936	
W	31		3.525	1.575	67	71	71	0,944		agua alla pagina successiv

gue alla pagina successive

Tub A33 - continua dalla nanina pracadant


coord. X (maglia)	coord. V (maglia)	# campione	coord, X [m]	coord. Y [m]	TCDD [ng (kgSS) ⁻¹]	I-TEQ [ng (kgSS) ⁻¹]	WHO-TEQ [ng (kgSS) ⁻¹]	rapporto TCDD/I-TEQ	rapporto TCDD/WHO-TEQ	Comuneii
J	20	1	1.630	3.235	1,8	2,7	2,7	0,667	0,661	
J	20	Ш	1.650	3.290	2,1	3,5	3,6	0,600	0,590	
M	21	П	2.020	3.080	4,5	5,8	5,9	0,776	0,763	
M	18	ш	2.030	3.495	3,8	7	7,1	0,543	0,536.	
1	21		1.520	3.040	6,6	7,8	8,2		0,810	
J	20	II	1.615	3.185	7,4	7,9	7,9	0,937	0,932	
K	21	IV	1.800	3.150	8,4	11	- 11		0,753	
M	20	Н	2.018	3.195	6,3	- 11	11		0,554	
K	21	Н	2.210 1.799	3.080	8,9	12	12	0,742	0,742	
I	20	П		3.169	13	14	14		0,905	
L	18 21	11	1.500	3.535	13	15	15 20	0,867	0,874	
M	21	1	2.025	3.020	16	21	21	0,895	0,762	
L	20	1	1.910	3.268	19	22	23		0,839	
I	18	1	1.390	3.500	22	23	23	0,957	0,943	
K	19	÷	1.740	3.320	20	26	26	0,769	0,760	Seveso
N	18	1	2.249	3.595	7,7	33	32		0,240	
K	16	II	1.739	3.854	32	34	34	0,941	0,937	
K	14	-	1.725	4.150	32	35	35		0,919	
K	18		1.800	3.569	32	35	35		0,906	
K	16	Ш	1.795	3.882	30	36	35	0,833	0,855	
L	17	П	1.880	3.680	34	37	37		0,919	
K	16	Ic	1.750	3.865	34	39	40	0,872	0,859	
M	19		1.990	3.335	26	41	42	0,634	0,620	
K	16	Ia	1.740	3.855	39	42	42		0,924	
K	16	Ie	1.745	3.860	39	43	43	0,907	0,909	
K	16	Id	1.750	3.855	40	43	43		0,920	
N	18	II	2.235	3.535	24	43	44	0,558	0,547	
K	21	II	1.715	3.062	40	44	44	0,909	0,915	
K	16	Ib	1.740	3.865	45	49	49	0,918	0,920	

segue alla pagina successiv

Tab. A3.3 - continua dalla pagina precedente.

_	_	_								
coord. X (maglia)	coord. Y (maglia)	# campione	coord. X [m]	coord. Y [m]	TCDD [ng (kgSS) ⁻¹]	I-TEQ [ng (kgSS) ⁻¹]	WHO-TEQ [ng (kgSS) ⁻¹]	rapporto TCDD/I-TEQ	rapporto TCDD/WHO-TEQ	Comunes
L	19		1.921	3.370	45	54	54	0,833	0,826	
L	18		1.985	3.540	55	58	58	0,948	0,950	
К	15		1.725	4.010	57	58	58	0,983	0,976	
M	17	I	2.025	3.675	67	70	71	0,957	0,950	
L	15		1.875	3.975	65	72	73	0,903	0,890	
M	17	П	1.995	3.685	72	75	76	0,960	0,947	Seveso
L	16		1.865	3.812	77	80	80	0,963	0,960	Seveso
L	17	1	1.880	3.665	79	82	83	0,963	0,956	
N	16		2.175	3.825	83	90	91	0,922	0,912	
K	21	i	1.800	3.105	110	112	113	0,982	0,977	
J	21		1.575	3.075	110	113	114	0,973	0,965	
K	21	Ш	1.715	3.090	120	122	122		0,982	
)%ile		25,5	31,0	30,6		0,870	
			5%ile		103,8	107,3	107,4			
_			min		0,2	1,5	1,5		0,127	
			max		250,0	253,0	253,4		0,987	
			nedia		35,1	39,5		0,827		
		me	ediana		25,5	31,0	30,6	0,869	0,870	



Gli ulteriori approfondimenti del 2008, non solo hanno confermato questo aspetto con i prima menzionati 52 superi dei limiti di cui 10 del livello industriale, ma l'hanno ulteriormente dettagliato, identificando a quale profondità del suolo c'è TCDD e ampliando anche alla zona R

i carotaggi (vedi mappe sotto con i punti di prelievo), con un risultato per la zona R di valori pressoché identici (e fuori limite) alla zona B.

Le mappe dei rilevamenti del 2008, nelle zone A, B, R interessate dal passaggio dell'autostrada Pedemontana

Ora, se mettiamo in correlazione questo aspetto anche con quelli che erano i fattori di esposizione presi in esame per le tre tipologie di scenari di rischio, ed in particolare a:

- 1. ingestione di particelle di suolo inquinato;
- 2. contatto dermico con particelle di suolo inquinato;

3. inalazione;

appare evidente a tutti che per le zone A, B, e R, lavori di escavazione sia per costruire l'autostrada Pedemontana, sia per le opere complementari ma anche per nuovi piani d'insediamento urbanistico, AUMENTANO sicuramente il rischio della popolazione d'essere esposta al contaminante TCDD, che ora giace in uno strato di terreno dopo i 70 cm nelle zone ex A del Bosco delle Querce (dove lo strato superficiale di terreno fortemente contaminato è stato asportato e sostituito con nuovo terreno) e nel cosidetto "Top Soil" – strato superficiale di circa 20cm – nelle zone B ed R mai bonificate.

Per questo, <u>la prescrizione CIPE n° 3</u>, impone a Pedemontana ulteriori accertamenti analitici nelle zone contaminate da Diossina dei comuni di Meda, Seveso, Cesano Maderno e Bovisio Masciago.

E' evidente che questa integrazione d'analisi va ampliata e applicata anche agli altri comuni che hanno all'interno dei loro confini un'area classificata come B o R e cioè Barlassina e Desio.

Va evidenziato che le istituzioni regionali e chi ha progettato l'autostrada, era ed è in possesso degli stessi dati che ora qui esponiamo.

L'identificazione dello stato di contaminazione da TCDD del suolo, potrà consentire valutazioni obbiettive sulla necessità di messa in sicurezza di queste aree, e, auspichiamo, la consapevolezza e l'assunzione di responsabilità atta ad evitare che la costruzione dell'autostrada pedemontana (opera che da sempre noi consideriamo inutile) esponga nuovamente al rischio diossina la popolazione e i lavoratori addetti alla sua realizzazione.

Documento elaborato da INSIEME IN RETE PER UNO SVILUPPO SOSTENIBILE